
Just for your interest…

Where does 𝑒 come from, and why 
is it so important?

𝑒 = 2.71828…
is known as Euler’s Number, and is 
considered one of the five 
fundamental constants in maths:  
0, 1, 𝜋, 𝑒, 𝑖

Its value was originally encountered by Bernoulli 
who was solving the following problem:
You have £1. If you put it in a bank account with 100% 
interest, how much do you have a year later? If the interest is 
split into 2 instalments of 50% interest, how much will I 
have? What about 3 instalments of 33.3%? And so on…

No. Instalments Money after a year

1 1 × 21 = £2

2 1 × 1.52 = £2.25

3 1 × 1. ሶ33 = £2.37

4 1 × 1.254 = £2.44
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As 𝑛 becomes larger, the amount after a year 
approaches £2.71…, i.e. 𝑒!

Thus:

𝑒 = lim
𝑛→∞
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But we have seen that differentiation by first principles uses 
‘limits’. It is therefore possible to prove from the definition 

above that 
𝑑

𝑑𝑥
𝑒𝑥 = 𝑒𝑥 , and these two definitions of 𝒆

are considered to be equivalent*.

𝑒 therefore tends to arise in problems involving limits, and 
also therefore crops up all the time in anything involving 
differentiation and integration. Let’s see some applications…

*You can find a full proof here in my Graph Sketching/Limits slides: 
http://www.drfrostmaths.com/resources/resource.php?rid=163



Application 1: Solutions to 
many ‘differential equations’.

Frequently in physics/maths, the rate of 
change of a variable is proportional to 
the value itself. So with a population 𝑃
behaving in this way, if the population 
doubled, the rate of increase would 
double.
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This is known as a ‘differential equation’ 
because the equation involves both the 

variable and its derivative 
𝑑𝑃

𝑑𝑡
.

The ‘solution’ to a differentiation equation 
means to have an equation relating 𝑃 and 

𝑡 without the 
𝑑𝑃

𝑑𝑡
. We end up with (using 

Year 2 techniques):

𝑷 = 𝑨𝒆𝒌𝒕

where 𝐴 and 𝑘 are constants. This is 
expected, because we know from 
experience that population growth is 
usually exponential.

𝑃

𝑡

Application 2: Russian Roulette

Application 3: Secret Santa

I once wondered (as you do), if I was playing Russian 
Roulette, where you randomly rotate the barrel of a gun 
each time with 𝒏 chambers, but with one bullet, what’s 
the probability I’m still alive after 𝒏 shots?

The probability of surviving each time is 

1 −
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𝑛
, so the probability of surviving all 𝑛 shots is 1 −
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. We might consider what 

happens when 𝑛 becomes large, i.e. lim
𝑛→∞
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. In general, 𝑒𝑘 = lim𝑛→∞ 1 +
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Thus lim𝑛→∞ 1 −
1

𝑛

𝑛
= 𝑒−1 =

1

𝑒
, i.e. I have a 1 in 𝑒 chance of surviving. Bad odds!

This is also applicable to the lottery. If there was a 1 in 20 million chance of winning 
the lottery, we might naturally wonder what happens if we bought 20 million (random) 
lottery tickets. There’s a 1 in 𝑒 (roughly a third) chance of winning no money at all!

A scene from one of Dr 
Frost’s favourite films, 
The Deer Hunter.

You might have encountered 
𝑛! = 𝑛 × 𝑛 − 1 ×⋯× 2 × 1, 
said “𝑛 factorial” meaning “the 
number of ways of arranging 𝑛
objects in a line”. So if we had 3 
letters ABC, we have 3! = 6
ways of arranging them.

Meanwhile, ! 𝑛 means the 
number of derangements of 𝑛, 
i.e. the arrangements where no 
letter appears in its original 
place.

ABC, 
ACB, 
BAC, 
BCA, 
CAB, 
CBA

For ABC, that only gives BCA or CAB, so ! 3 = 2. 
This is applicable to ‘Secret Santa’ (where each 
person is given a name out a hat of whom to give 
their present to) because ideally we want the 
scenario where no person gets their own name.

Remarkably, a derangement occurs an 𝒆-th of 
the time. So if there are 5 people and hence 5! =
120 possible allocations of recipient names, we 
only get the ideal Secret Santa situation just 
120

𝑒
= 44.15 → 44 times. And so we get my 

favourite result in the whole of mathematics:
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means round)! 𝑛 =
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