C4 Cheat Sheet

Chapter 1 – Partial Fractions
- Be able to split a fraction whose denominator is a product of linear expressions, e.g. \(\frac{2x+3}{x(x+1)} \)
- Be able to split a fraction where one (or more) of the factors in the denominator are squared, e.g. \(\frac{2x^2+3}{x^2(x+1)} \)
- Deal with top-heavy fractions where the highest power in the denominator is greater or equal to the highest power in the denominator, e.g. \(\frac{x^2+2}{x(x+1)} \)
- The textbook provides two methods for dealing with top heavy fractions. The algebraic long division method is miles easier!
 - e.g. \(\frac{x^2+2}{x(x+1)} \). Using long division we get a quotient of 1 and a remainder of \(-x + 2\), thus:

 \[\frac{x^2 + 2}{x(x+1)} = 1 + \frac{-x + 2}{x(x+1)} \]

 Then split the \(\frac{-x+2}{x(x+1)} \) into partial fractions as normal.
- Be able to split a fraction where the denominator is a product of linear expressions, e.g. \(\frac{2x^2+3}{x^2(x+1)} \)
- Be able to split a fraction where the denominator's factors are squared.
- Forgetting to multiply by \(\frac{dx}{dt} \) when integrating parametric equations.
- Not realising the fraction is top heavy and therefore trying to incorrectly do:

 \[\frac{2x^2}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1} \]

Chapter 2 – Parametric Equations
- Know that \(\frac{dy}{dx} = \frac{(dy/dt)}{(dx/dt)} \)
 (This makes sense as we have just divided numerator and denominator by \(dt \))
- Be able to integrate parametric equations.
- Be able to convert parametric equations into a single Cartesian one.
- Note: You will NOT be asked to sketch parametric equations.
- To convert parametric equations involving trig functions to Cartesian ones, the strategy is usually to make \(\sin x \) and \(\cos x \) the subject before using the identity \(\sin^2 x + \cos^2 x \equiv 1 \). Often squaring one of the parametric equations helps so that we have \(\sin^2 x \) and/or \(\cos^2 x \):

 \[
 \begin{align*}
 x &= \sqrt{3} \sin 2t & y &= 4 \cos^2 t \\
 x &= 2\sqrt{3} \sin t \cos t \quad & x^2 &= 12 \sin^2 t \cos^2 t \\
 x^2 &= 12(1 - \cos^2 t) \cos^2 t \quad & x^2 &= 12 \left(1 - \left(\frac{y}{4}\right)^2\right) \frac{y}{4}
 \end{align*}
 \]
- Forgetting the extra term when the denominator’s factors are squared.
- Being sloppy at algebraic long division!
- Be careful with substitution of negative values.
- You may have to spot that you need to factorise the denominator first before expressing as partial fractions.
- Forgetting to multiply by \(\frac{dx}{dt} \) when integrating parametric equations.
 Remember that the \(dx \) in \(\int y \, dx \) can be replaced with \(\frac{dx}{dt} \), which is easy to remember, as the \(dt \)'s cancel if we think of \(dx \) and \(dt \) just as quantities.
- Expanding out an expression of the form \((1 + kx)^n\), where \(n\) is negative or fractional.
- Expanding out an expression of the form \((a + kx)^n\), where \(a\) needs to be factorised out first.
- Finding the product of two Binomial expansions, e.g.

\[
\sqrt{1+x} - \sqrt{1-x} \rightarrow (1 + x)^{\frac{1}{2}}(1 - x)^{-\frac{1}{2}}
\]

- \((1 + kx)^n = 1 + n(kx) + \frac{n(n-1)}{2!}(kx)^2 + \frac{n(n-1)(n-2)}{3!}(kx)^3 + \ldots\)
- Your expression may be a binomial expansion in disguise, e.g.

\[
\frac{1}{\sqrt{1-2x}} = (1 - 2x)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)(-2x) + \frac{-1}{2} \times \frac{-3}{2!}(-2x)^2 + \ldots
\]

- When the first term is not 1, you have to factorise this number out, raised to the power outside the brackets, e.g.

\[
(4 + 5x)^{\frac{1}{2}} = 4^{\frac{1}{2}}\left(1 + \frac{5}{4}x\right)^{\frac{1}{2}}
= 2\left[1 + \frac{1}{2}\left(\frac{5}{4}x\right) + \ldots\right]
\]

Ensure the outer brackets are maintained till the very end, when you expand them out.

- When finding the product of two expansions, then if you needed up to the \(x^2\) term, then you only need to find up to the \(x^2\) term in each of the two expansions. Only consider things in the expansion which are up to \(x^2\). e.g.

\[
\begin{align*}
\sqrt{1+x} - \sqrt{1-x} &\approx (1 + x)^{\frac{1}{2}}(1 - x)^{-\frac{1}{2}} \\
(1 + x)^{\frac{1}{2}} &\approx 1 + \frac{1}{2}x - \frac{1}{8}x^2 \\
(1 - x)^{-\frac{1}{2}} &\approx 1 + \frac{1}{2}x + \frac{3}{8}x^2 \\
(1 + x)^{\frac{1}{2}}(1 - x)^{-\frac{1}{2}} &\approx \left[1 + \frac{1}{2}x - \frac{1}{8}x^2\right]\left[1 + \frac{1}{2}x + \frac{3}{8}x^2\right] \\
&= 1 + \frac{1}{2}x + \frac{1}{2}x^2
\end{align*}
\]

Many things!
- Lack of brackets when squaring/cubing things, e.g. you need \((2x)^3 = 8x^3\) not \(2x^3\)
- With say \((3 + 4x)^{-1}\), forgetting to raise the 3 you factor out to the power of -1.
- Forgetting to put the factorial in the denominators of the Binomial coefficients (a common error is \(\frac{3}{3}\) instead of \(\frac{3!}{3}\))
- Being careless in using your calculator when simplifying coefficients.
- Be ridiculously careful with signs!
- Accidentally forgetting the minus in the power when expanding say \(\frac{1}{(x+1)^2}\)
- Appreciate that \(y = a^x \) represents ‘exponential growth’ when \(a > 1 \), and ‘exponential decay’ when \(0 < a < 1 \) (and from C3, know the graphs for each).
- Know that \(\frac{d}{dx}(a^x) = a^x \ln a \) (proof unlikely to be asked for)
- Be able to differentiate implicitly, e.g. \(\frac{d}{dx}(y^2) = 2y \frac{dy}{dx} \) and subsequently be able to make \(\frac{dy}{dx} \) the subject.
- Connect different derivatives involving rates, e.g. \(\frac{dA}{dx} \) behaves pretty much like normal fractions, first write the following product with the \(\frac{dA}{dx} \) copied into the diagonals:
 \[
 \frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt}
 \]
- Example of implicit differentiation (which involves collecting the \(\frac{dy}{dx} \) terms on one side and factorising it out):
 “Given that \(xy^2 + 2y = x^2 \), find \(\frac{dy}{dx} \).”
 Differentiating both sides with respect to \(x \):
 \[
 x \left(2y \frac{dy}{dx} \right) + y^2 + 2 \frac{dy}{dx} = 2x
 \]
 \[
 \frac{dy}{dx} = \frac{2x - y^2}{2xy + 2}
 \]
 They particularly love use of the product rule!
- A ‘differential equation’ is an equation involving both some variables and derivatives involving those variables, e.g. a mix of \(x, y \) and \(\frac{dy}{dx} \). “Solving” this equation means to obtain an equation only involving the variables, and not the derivatives.
- Whenever you see the word ‘rate’, think \(\frac{dy}{dt} \).
- “A circle’s radius increases at a rate of 2cm/s. Find the rate of increase of its area when the radius is 10cm.”
 First note the variables involved: \(A, r \) and because we’re talking about rates, \(t \). We need to find \(\frac{dA}{dt} \). Since derivatives behave pretty much like normal fractions, first write the following product with the \(dA \) and \(dt \) copied into the diagonals:
 \[
 \frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}
 \]
 Then fill the remaining diagonals with the remaining variable, \(dr \):
 \[
 \frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}
 \]
 One value, in this case \(\frac{dr}{dt} = 2 \), is always given. The other we need to form some formula, in this case \(A = \pi r^2 \) (and often using simple geometry to find an area of volume), and differentiate:
 \[
 \frac{dA}{dr} = 2\pi r
 \]
 Thus when \(r = 10 \), \(\frac{dA}{dr} = 2 \times \pi \times 10 = 20\pi \)
 Thus: \(\frac{dA}{dt} = 20\pi \times 2 = 40\pi \)
- A classic is to accidentally treat \(x \) or \(y \) as constants rather than variables, when differentiating implicitly. Note that \(\frac{d}{dx}(ax) = a \) if \(a \) is a constant, but \(\frac{d}{dx}(xy) = x \frac{dy}{dx} + y \) by the product rule, and not just \(y \).
- Whenever differentiating implicitly, you might forget to put the \(\frac{dy}{dx} \) e.g. \(\frac{d}{dx}(y^2) = 2y \frac{dy}{dx} \) rather than the correct \(2y \frac{dy}{dx} \).
- Exponential functions do not behave like polynomials when differentiated. e.g. \(\frac{d}{dx}(x^3) = 3x^2 \), but \(\frac{d}{dx}(3^x) = 3^x \ln 3 \) and absolutely not \(x \cdot 3^{x-1} \! \! \)!
- Many students often get their equation wrong when connecting rates of change, often say dividing instead of multiplying, or vice versa. If you use the ‘fill in the diagonals’ tip on the left this will unlikely be a problem.
<table>
<thead>
<tr>
<th>5 - Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(In rough descending order of how frequently they appear in exams)</td>
</tr>
<tr>
<td>- Find the point of intersection of two lines or prove that two lines do not intersect.</td>
</tr>
<tr>
<td>- Find the angle between two lines.</td>
</tr>
<tr>
<td>- Finding a missing x/y/z value of a point on a line.</td>
</tr>
<tr>
<td>- Find the length of a vector or the distance between two points.</td>
</tr>
<tr>
<td>- Find the nearest point on a line to a point not on the line (often to the origin) – note: not in your textbook!</td>
</tr>
<tr>
<td>- Find the area of a rectangle, parallelogram or triangle formed to a point not on the line (often particularly helpful when you need to find the area of some shape (typically the last part of a question).</td>
</tr>
<tr>
<td>- When finding the area of a shape, you can almost always use your answers from previous parts of the questions, including lengths of vectors and angles between two vectors.</td>
</tr>
<tr>
<td>- Almost always draw a suitable diagram. This will be particularly helpful when you need to find the area of some shape (typically the last part of a question).</td>
</tr>
<tr>
<td>- When finding the angle between two lines or prove that two lines do not intersect.</td>
</tr>
<tr>
<td>- Show 3 points are collinear (i.e. vectors are parallel).</td>
</tr>
<tr>
<td>- To show 3 points A, B, C are collinear, just show that AB is a multiple of BC (i.e. vectors are parallel).</td>
</tr>
<tr>
<td>- “Show $3i + 3j + 2k$ lies on the line with vector equation $r = i + 3j + 4k + t(i - k)$”</td>
</tr>
<tr>
<td>- i.e. Show $\begin{pmatrix} 3 \ 3 \ 2 \ \end{pmatrix}$ lies on $\begin{pmatrix} 1 + t \ 3 \ 4 - t \ \end{pmatrix}$. Equating $3 = 1 + t$ to $t = 2$.</td>
</tr>
<tr>
<td>- Then $4 - t = 4 - 2 = 2$, so y and z components are same.</td>
</tr>
<tr>
<td>- “Let $l_1: r = (9i + 13j - 3k) + \lambda(i + 4j - 2k)$”</td>
</tr>
<tr>
<td>- Given point A has positive vector $4i + 16j - 3k$ and P lies on l_1 such that AP is perpendicular to l_1, find $P.”$</td>
</tr>
<tr>
<td>- Forgetting the square root when finding the magnitude of a vector.</td>
</tr>
<tr>
<td>- When finding the angle between two lines, accidentally using the full vector representation of the line (in your dot product), and not just the direction component, e.g. using $\begin{pmatrix} 1 - t \ 2 \ \end{pmatrix}$ instead of just the correct $\begin{pmatrix} -1 \ 0 \ 2t \ \end{pmatrix}$.</td>
</tr>
<tr>
<td>- Making sign errors when subtracting vectors, particularly when subtracting an expression involving a negative. Correctly: $\begin{pmatrix} 1 \ 2 \ -1 \end{pmatrix} - \begin{pmatrix} 1 - t \ -2 \ 2t - 4 \end{pmatrix} = \begin{pmatrix} t \ 4 \ 7 - 2t \end{pmatrix}$.</td>
</tr>
<tr>
<td>- Once finding out s and t (or μ and λ) when solving simultaneous equation to find the intersection of two lines, forgetting to show that these satisfy the remaining equation.</td>
</tr>
<tr>
<td>- Forgetting the square root when finding the magnitude of a vector.</td>
</tr>
</tbody>
</table>
6 - Integration

- Integrate a large variety of expressions. See the ‘integration cheat sheet’ overleaf. But by category:
 - Integrating trig functions, including reciprocal functions and squared functions $\sin^2 x, \cos^2 x, \sec^2 2x$, etc.
 - Integrating by ‘reverse chain rule’ (also known as ‘integration by inspection’).
 - Integrating by a given substitution.
 - Integrating by parts.
 - Integrating by use of partial fractions.
 - Integrating top heavy fractions by algebraic division.

- One often forgotten integration is exponential functions such as 2^x. Differentiating has effect of multiplying by \ln of the base, and thus integrating divides by it. i.e.

 $$\frac{d}{dx}(2^x) = \ln 2 \cdot 2^x$$

 $$\int 2^x \, dx = \frac{1}{\ln 2} 2^x + C$$

- Know the two double angle formulae for \cos like the back of your hand, for use when integrating $\sin^2 x$ or $\cos^2 x$.

- In general, know your integrals of all the ‘trig squares’, i.e. $\sin^2 x, \cos^2 x, \tan^2 x, \cosec^2 x, \sec^2 x, \cot^2 x$.

- For integration by ‘reverse chain rule’, always ‘consider’ some sensible expression to differentiate, then adjust for the factor difference. E.g.

 $$\int (4 - 3x)^5 \, dx$$

 Then your working might be:

 “Consider $y = (4 - 3x)^5$. Then $\frac{dy}{dx} = 6(4 - 3x)^5 \times (-3) = -18(4 - 3x)^5$.

 \therefore $\int (4 - 3x)^5 \, dx = - \frac{1}{18} (4 - 3x)^6 + C$.

- For integration by substitution, the official specification says “Except in the simplest of cases, the substitution will be given.”

- Remember that starting with the substitution, say $u = x^2 + 1$, it helps to make x the subject, except in some cases where there’s a trigonometric substitution, e.g. if $u = \sin x + 1$, but $\sin x$ appears in the expression to integrate, then we might

 Where to start!

 - One big problem is just not knowing what method to use to integrate a particular expression. The cheat sheet overleaf should help, as should lots of practice of a variety of expressions!

 - Similarly getting stuck on integration by substitution, because you can’t get the whole original expression only in terms of the new variable (t or otherwise).

 - Perhaps the all-time biggest mistake is forgetting to consider the effects of chain rule. E.g. Accidentally doing

 $$\int \cos^2 x \, dx = \sin 2x$$

 - Sign errors when integrating/differentiating trig functions. Other than \sin and \cos, be careful about \cot/\cosec:

 $$\frac{d}{dx}(\cot x) = -\cosec^2 x$$

 Thus $\int \cosec^2 x \, dx = -\cot x + C$.

 - A common one: Forgetting about the chain rule when integrating expressions of the form $(a + bx)^c$, see $\int (4 - 3x)^5 \, dx$ example.
- Be able to differentiate parametric equations:
 \[
 \int y \, dx = \int \frac{dy}{dt} \, dt
 \]
- Calculate volumes of revolution both for normal and parametric equations:
 \[
 V = \pi \int y^2 \, dx \\
 V = \pi \int \frac{y^2 \, dx}{dt} \, dt
 \]
- Solve differential equations.
 e.g. \[
 \frac{dy}{dx} = xy + x
 \]
- Trapezium Rule as per C2, but now with C3/C4 expressions to integrate. You will frequently be asked to compare the actual error and the estimated area using the rule, and the percentage error.

| \[
 \int x^2 \cos x \, dx \\
 u = x^2 \quad \frac{dv}{dx} = \cos x \\
 du = 2x \quad v = \sin x \\
 \int x^2 \sin x \, dx = x^2 \sin x - \int 2x \sin x \, dx
 \]
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>“For [2x \sin x , dx]:”</td>
</tr>
</tbody>
</table>
| \[
 u = 2x \quad \frac{dv}{dx} = \sin x \\
 du = 2 \quad v = -\cos x \\
 \int 2x \sin x \, dx = 2x \cos x - \int -2 \cos x \, dx \\
 = -2x \cos x + \int 2 \cos x \, dx \\
 = -2x \cos x + 2 \sin x \\
 \therefore \int x^2 \cos x \, dx = x^2 \sin x - (-2x \cos x + 2 \sin x) \\
 = x^2 \sin x + 2x \cos x - 2 \sin x + C
 |
- Remember that constants differentiate to nothing, i.e. \[
 \frac{d}{dx}(\pi^2) = 0 \text{ not } 2\pi!
 \]
- Similarly \& is a constant. \[\ln c\] would otherwise differentiate to \[\ln 2\].
- If \[u^2 = x + 1\] is the substitution, you’d be doing unnecessary work if you then square root. Differentiating implicitly:
 \[
 2u \frac{du}{dx} = 1 \\
 dx = 2u \, du
 \]
 This is much much tidier!
- Forgetting to change your limits for either parametric integration or integration by substitution! But note that in integration by substitution, once you’ve changed back to the original variable (probably \[x\]), you should use the original limits.
- Don’t try and use integration by parts if you can use ‘integration by inspection’. e.g. For \[\int x \, e^x\], then integration by parts would lead to a dead end.
- For differential equations, ensure the variable at the top of the \[\frac{dx}{dt}\] matches what you’ve moved to the LHS. e.g. If \[\frac{dt}{dr} = r^2 t\] then it’s the \[t\] you want on the LHS.
Note the nice double negative tidying up trick towards the end.

- If you’re solving $\frac{dy}{dx} = xy + y$, then you need the y (or whatever variable appears at the top of $\frac{dy}{dx}$) on the LHS. This is always achieved by a division or multiplication, which may require factorisation first:

 $\frac{dy}{dx} = y(x + 1)$

 $1 \frac{dy}{y dx} = x + 1$

 $\int \frac{1}{y} \, dy = \int x + 1 \, dx$

 $\ln|y| = \frac{1}{2}x^2 + x + C$

 $y = e^{\frac{1}{2}x^2 + x + C} = Ae^{\frac{1}{2}x^2 + x}$

- Note in the above example, we let some new constant $A = e^C$ to help tidy things up. If we had $\ln x + C$ on the right-hand-side, we’d make $C = \ln A$ so that $\ln x + \ln A = \ln(Ax)$. Similarly if we had $\ln y = x + C$, and hence $y = e^{x+C} = e^x e^C$, we could make $A = e^C$.

- In differential equations, ensure you separate the RHS into the form $f(x)g(y)$ first so that you are able to divide by $g(y)$, e.g. $\frac{dy}{dx} = x + xy \rightarrow \frac{dy}{dx} = x(1 + y) \rightarrow \frac{1}{1+y} \, dy = x \, dx$

- In differential equations, if you’re given initial conditions (note, often $t = 0$ is often implied for the initial condition), then it’s generally easier to plug them in to work out your constant of integration sooner rather than later.
C4 Integration Cheat Sheet

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>How to deal with it</th>
<th>$\int f(x),dx$ (+constant)</th>
<th>FormBk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin x$</td>
<td>Standard result</td>
<td>$-\cos x$</td>
<td>No</td>
</tr>
<tr>
<td>$\cos x$</td>
<td>Standard result</td>
<td>$\sin x$</td>
<td>No</td>
</tr>
<tr>
<td>$\tan x$</td>
<td>In formula booklet, but use $\int \frac{\sin x}{\cos x},dx$ which is of the form $\int \frac{f'(x)}{f(x)},dx$</td>
<td>$\ln</td>
<td>\sec x</td>
</tr>
<tr>
<td>$\sin^2 x$</td>
<td>For both $\sin^2 x$ and $\cos^2 x$ use identities for $\cos 2x$. $\cos 2x = 1 - 2\sin^2 x$</td>
<td>$\frac{1}{2}x - \frac{1}{4}\sin 2x$</td>
<td>No</td>
</tr>
<tr>
<td>$\cos^2 x$</td>
<td>$\cos 2x = 2\cos^2 x - 1$</td>
<td>$\frac{1}{2}x + \frac{1}{4}\sin 2x$</td>
<td>No</td>
</tr>
<tr>
<td>$\tan^2 x$</td>
<td>$1 + \tan^2 x \equiv \sec^2 x$</td>
<td>$\tan x - x$</td>
<td>No</td>
</tr>
<tr>
<td>$\cosec x$</td>
<td>Would use substitution $u = \cosec x + \cot x$, but too hard for exam.</td>
<td>$-\ln</td>
<td>\cosec x + \cot x</td>
</tr>
<tr>
<td>$\sec x$</td>
<td>Would use substitution $u = \sec x + \tan x$, but too hard for exam.</td>
<td>$\ln</td>
<td>\sec x + \tan x</td>
</tr>
<tr>
<td>$\cot x$</td>
<td>$\int \frac{\cos x}{\sin x},dx$ which is of the form $\int \frac{f'(x)}{f(x)},dx$</td>
<td>$\ln</td>
<td>\sin x</td>
</tr>
<tr>
<td>$\cosec^2 x$</td>
<td>By observation.</td>
<td>$-\cot x$</td>
<td>No!</td>
</tr>
<tr>
<td>$\sec^2 x$</td>
<td>By observation.</td>
<td>$\tan x$</td>
<td>Yes (but memorise)</td>
</tr>
<tr>
<td>$\cot^2 x$</td>
<td>$1 + \cot^2 x \equiv \cosec^2 x$</td>
<td>$-\cot x - x$</td>
<td>No</td>
</tr>
<tr>
<td>e^x</td>
<td>Standard result</td>
<td>e^x</td>
<td>No</td>
</tr>
<tr>
<td>a^x</td>
<td>$y = a^x \rightarrow \ln y = x \ln a$ Then differentiate implicitly.</td>
<td>$\frac{1}{\ln(a)}a^x$</td>
<td>No</td>
</tr>
<tr>
<td>$\frac{1}{x}$</td>
<td>Standard result</td>
<td>$\ln x$</td>
<td>No</td>
</tr>
<tr>
<td>$\ln x$</td>
<td>Use IBP, where $u = \ln x$, $\frac{du}{dx} = 1$</td>
<td>$x \ln x - x$</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>How to deal with it</th>
<th>$\int f(x),dx$ (+constant)</th>
<th>FB?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin 2x \cos 2x$</td>
<td>For any product of \sin and \cos with same coefficient of x, use double angle. $\sin 2x \cos 2x \equiv \frac{1}{2}\cos 4x$</td>
<td>$-\frac{1}{8}\cos 4x$</td>
<td>No</td>
</tr>
<tr>
<td>$\cos x e^{\sin x}$</td>
<td>Of form $g'(x)f'(g(x))$</td>
<td>$e^{\sin x}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{x}{x + 1}$</td>
<td>Use algebraic division.</td>
<td>$x - \ln</td>
<td>x + 1</td>
</tr>
<tr>
<td>$\frac{1}{x(x + 1)}$</td>
<td>Use partial fractions.</td>
<td>$\ln</td>
<td>x</td>
</tr>
<tr>
<td>$\frac{x}{(x^2 + 1)^2}$</td>
<td>Power around denominator so NOT of form $\int \frac{kf'(x)}{f(x)},dx$.</td>
<td>$-\frac{1}{2}(x^2 + 1)^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{8x^2}{4x^2 - 1}$</td>
<td>Fraction top heavy so do algebraic division first. Then split into algebraic fractions as $4x^2 - 1 = (2x + 1)(2x - 1)$</td>
<td>$\frac{1}{2}(2x + 1)^{-1} - \frac{1}{2}(2x - 1)^{-1}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{e^{2x+1}}{1 - 3x}$</td>
<td>For any function where ‘inner function’ is linear expression, divide by coefficient of x</td>
<td>$\frac{2}{3}e^{2x+1} - \frac{1}{3}\ln</td>
<td>1 - 3x</td>
</tr>
<tr>
<td>$\frac{x\sqrt{2x + 1}}{x^2 + 1}$</td>
<td>Use sensible substitution, $u = 2x + 1$ or even better, $u^2 = (2x + 1)^3(3x - 1)$</td>
<td>$\frac{1}{15}(2x + 1)^3(3x - 1)$</td>
<td></td>
</tr>
<tr>
<td>$\sin^5 x \cos x$</td>
<td>Reverse chain rule.</td>
<td>$-\frac{1}{6}\sin^6 x$</td>
<td></td>
</tr>
<tr>
<td>$\sin 3x \cos 2x$</td>
<td>Use identities in C3 formula booklet, $\sin 3x \cos 2x = \frac{1}{10}(\sin 5x + \cos 3x)$</td>
<td>Sort of booklet, $\sin 3x \cos 2x = \frac{1}{10}(\sin 5x + \cos 3x)$</td>
<td>Sort of booklet, $\sin 3x \cos 2x = \frac{1}{10}(\sin 5x + \cos 3x)$</td>
</tr>
</tbody>
</table>

Note: has never come up in an exam.